Logo
programming4us
programming4us
programming4us
programming4us
Home
programming4us
XP
programming4us
Windows Vista
programming4us
Windows 7
programming4us
Windows Azure
programming4us
Windows Server
programming4us
Windows Phone
 
Windows Server

Understanding AD Design Concepts for Exchange Server 2010

- Free product key for windows 10
- Free Product Key for Microsoft office 365
- Malwarebytes Premium 3.7.1 Serial Keys (LifeTime) 2019
3/19/2011 3:19:53 PM
After all objectives, dependencies, and requirements have been mapped out, the process of designing the Exchange Server 2010 environment can begin. Decisions should be made in the following key areas:
  • AD design

  • Exchange server placement

  • Global catalog placement

  • Client access methods

Understanding the AD Forest

Because Exchange Server 2010 relies on the Windows Server 2008 AD for its directory, it is therefore important to include AD in the design plans. In many situations, an AD implementation, whether based on Windows 2000 Server, Windows Server 2003, or Windows Server 2008, AD already exists in the organization. In these cases, it is necessary only to plan for the inclusion of Exchange Server into the forest.

Note

Exchange Server 2010 has several key requirements for AD. First, all domains and the forest must be at Windows Server 2003 functional levels or higher. Second, it requires that at least one domain controller in each site that includes Exchange Server be at least Windows Server 2003 SP2 or Windows Server 2008.


If an AD structure is not already in place, a new AD forest must be established. Designing the AD forest infrastructure can be complex, and can require nearly as much thought into design as the actual Exchange Server configuration itself. Therefore, it is important to fully understand the concepts behind AD before beginning an Exchange Server 2010 design.

In short, a single “instance” of AD consists of a single AD forest. A forest is composed of AD trees, which are contiguous domain namespaces in the forest. Each tree is composed of one or more domains, as illustrated in Figure 1.

Figure 1. Multitree forest design.

Certain cases exist for using more than one AD forest in an organization:

  • Political limitations— Some organizations have specific political reasons that force the creation of multiple AD forests. For example, if a merged corporate entity requires separate divisions to maintain completely separate information technology (IT) infrastructures, more than one forest is necessary.

  • Security concerns— Although the AD domain serves as a de facto security boundary, the “ultimate” security boundary is effectively the forest. In other words, it is possible for user accounts in a domain in a forest to hack into domains within the same forest. Although these types of vulnerabilities are not common and are difficult to do, highly security-conscious organizations should implement separate AD forests.

  • Application functionality— A single AD forest shares a common directory schema, which is the underlying structure of the directory and must be unique across the entire forest. In some cases, separate branches of an organization require that certain applications, which need extensions to the schema, be installed. This might not be possible or might conflict with the schema requirements of other branches. These cases might require the creation of a separate forest.

  • Exchange-specific functionality (resource forest)— In certain circumstances, it might be necessary to install Exchange Server 2010 into a separate forest, to enable Exchange Server to reside in a separate schema and forest instance. An example of this type of setup is an organization with two existing AD forests that creates a third forest specifically for Exchange Server and uses cross-forest trusts to assign mailbox permissions.

The simplest designs often work the best. The same principle applies to AD design. The designer should start with the assumption that a simple forest and domain structure will work for the environment. However, when factors such as those previously described create constraints, multiple forests can be established to satisfy the requirements of the constraints.

Understanding the AD Domain Structure

After the AD forest structure has been chosen, the domain structure can be laid out. As with the forest structure, it is often wise to consider a single domain model for the Exchange Server 2010 directory. In fact, if deploying Exchange Server is the only consideration, this is often the best choice.

There is one major exception to the single domain model: the placeholder domain model. The placeholder domain model has an isolated domain serving as the root domain in the forest. The user domain, which contains all production user accounts, would be located in a separate domain in the forest, as illustrated in Figure 2.

Figure 2. The placeholder domain model.


The placeholder domain structure increases security in the forest by segregating high-level schema-access accounts into a completely separate domain from the regular user domain. Access to the placeholder domain can be audited and restricted to maintain tighter control on the critical schema. The downside to this model, however, is the fact that the additional domain requires a separate set of domain controllers, which increases the infrastructure costs of the environment. In general, this makes this domain model less desirable for smaller organizations because the trade-off between increased cost and less security is too great. Larger organizations can consider the increased security provided by this model, however.

Reviewing AD Infrastructure Components

Several key components of AD must be installed within an organization to ensure proper Exchange Server 2010 and AD functionality. In smaller environments, many of these components can be installed on a single machine, but all need to be located within an environment to ensure server functionality.

Outlining the Domain Name System (DNS) Impact on Exchange Server 2010 Design

In addition to being tightly integrated with AD, Exchange Server 2010 is joined with the Domain Name System (DNS). DNS serves as the lookup agent for Exchange Server 2010, AD, and most new Microsoft applications and services. DNS translates common names into computer-recognizable IP addresses. For example, the name www.cco.com translates into the IP address of 12.155.166.151. AD and Exchange Server 2010 require that at least one DNS server be made available so that name resolution properly occurs.

Given the dependency that both Exchange Server 2010 and AD have on DNS, it is an extremely important design element.

Reviewing DNS Namespace Considerations for Exchange Server

Given Exchange Server 2010’s dependency on DNS, a common DNS namespace must be chosen for the AD structure to reside in. In multiple tree domain models, this could be composed of several DNS trees, but in small organization environments, this normally means choosing a single DNS namespace for the AD domain.

There is a great deal of confusion between the DNS namespace in which AD resides and the email DNS namespace in which mail is delivered. Although they are often the same, in many cases there are differences between the two namespaces. For example, CompanyABC’s AD structure is composed of a single domain named abc.internal, and the email domain to which mail is delivered is companyabc.com. The separate namespace, in this case, was created to reduce the security vulnerability of maintaining the same DNS namespace both internally and externally (published to the Internet).

For simplicity, CompanyABC could have chosen companyabc.com as its AD namespace. This choice increases the simplicity of the environment by making the AD logon user principal name (UPN) and the email address the same. For example, the user Pete Handley is [email protected] for logon, and [email protected] for email. This option is the choice for many organizations because the need for user simplicity often trumps the higher security.

Optimally Locating Global Catalog Servers

Because all Exchange Server directory lookups use AD, it is vital that the essential AD global catalog information is made available to each Exchange server in the organization. For many small offices with a single site, this simply means that it is important to have a full global catalog server available in the main site.

The global catalog is an index of the AD database that contains a partial copy of its contents. All objects within the AD tree are referenced within the global catalog, which enables users to search for objects located in other domains. Every attribute of each object is not replicated to the global catalogs, only those attributes that are commonly used in search operations, such as first name and last name. Exchange Server 2010 uses the global catalog for the email-based lookups of names, email addresses, and other mail-related attributes.

Note

Exchange Server 2010 cannot make use of Windows Server 2008 Read Only Domain Controllers (RODCs) or Read Only Global Catalog (ROGC) servers, so be sure to plan for full GCs and DCs for Exchange Server.


Because full global catalog replication can consume more bandwidth than standard domain controller replication, it is important to design a site structure to reflect the available WAN link capacity. If a sufficient amount of capacity is available, a full global catalog server can be deployed. If, however, capacity is limited, universal group membership caching can be enabled to reduce the bandwidth load.

Understanding Multiple Forests Design Concepts Using Microsoft Forefront Identity Manager (FIM)

Forefront Identity Manager (FIM) enables out-of-the-box replication of objects between two separate AD forests. This concept becomes important for organizations with multiple Exchange Server implementations that want a common Global Address List for the company. Previous iterations of FIM required an in-depth knowledge of scripting to be able to synchronize objects between two forests. FIM, on the other hand, includes built-in scripts that can establish replication between two Exchange Server 2010 AD forests, making integration between forests easier.

Other -----------------
- Understanding Core Exchange Server 2010 Design Plans : Planning for Exchange Server 2010
- Windows Server 2003 : Troubleshooting DHCP (part 3) - Reconciling the DHCP Database
- Windows Server 2003 : Troubleshooting DHCP (part 2) - Verifying the Server Configuration
- Windows Server 2003 : Troubleshooting DHCP (part 1) - Verifying the Client Configuration
- Windows Server 2003 : Monitoring DHCP Through Audit Logging
- Windows Server 2008 R2 : Configuring Operations Manager 2007 R2 (part 4) - Notifications and Subscriptions
- Windows Server 2008 R2 : Configuring Operations Manager 2007 R2 (part 3) - Agent Restart Recovery
- Windows Server 2008 R2 : Configuring Operations Manager 2007 R2 (part 2) - Active Directory Replication Monitoring Configuration
- Windows Server 2008 R2 : Configuring Operations Manager 2007 R2 (part 1) - Agent Proxy Configuration & Active Directory Client Monitoring Configuration
- Windows Server 2003 : Understanding How Clients Obtain Configuration (part 4) - DHCP ACK & DHCP NACK
 
 
Top 10
- Microsoft Visio 2013 : Adding Structure to Your Diagrams - Finding containers and lists in Visio (part 2) - Wireframes,Legends
- Microsoft Visio 2013 : Adding Structure to Your Diagrams - Finding containers and lists in Visio (part 1) - Swimlanes
- Microsoft Visio 2013 : Adding Structure to Your Diagrams - Formatting and sizing lists
- Microsoft Visio 2013 : Adding Structure to Your Diagrams - Adding shapes to lists
- Microsoft Visio 2013 : Adding Structure to Your Diagrams - Sizing containers
- Microsoft Access 2010 : Control Properties and Why to Use Them (part 3) - The Other Properties of a Control
- Microsoft Access 2010 : Control Properties and Why to Use Them (part 2) - The Data Properties of a Control
- Microsoft Access 2010 : Control Properties and Why to Use Them (part 1) - The Format Properties of a Control
- Microsoft Access 2010 : Form Properties and Why Should You Use Them - Working with the Properties Window
- Microsoft Visio 2013 : Using the Organization Chart Wizard with new data
 
programming4us
Windows Vista
programming4us
Windows 7
programming4us
Windows Azure
programming4us
Windows Server