Logo
programming4us
programming4us
programming4us
programming4us
Home
programming4us
XP
programming4us
Windows Vista
programming4us
Windows 7
programming4us
Windows Azure
programming4us
Windows Server
programming4us
Windows Phone
 
Windows Server

Securing Exchange Server 2010 with ISA Server : Outlining the Need for ISA Server 2006 in Exchange Server Environments

- Free product key for windows 10
- Free Product Key for Microsoft office 365
- Malwarebytes Premium 3.7.1 Serial Keys (LifeTime) 2019
3/28/2011 9:12:40 AM
A great deal of confusion exists about the role that ISA Server can play in an Exchange Server environment. Much of that confusion stems from the misconception that ISA Server is only a proxy server. ISA Server 2006 is, on the contrary, a fully functional firewall, virtual private network (VPN), web caching proxy, and application reverse-proxy solution. In addition, ISA Server 2006 addresses specific business needs to provide a secured infrastructure and improve productivity through the proper application of its built-in functionality. Determining how these features can help to improve the security and productivity of an Exchange Server environment is, therefore, of key importance.

In addition to the built-in functionality available within ISA Server 2006, a whole host of third-party integration solutions provide additional levels of security and functionality. Enhanced intrusion detection support, content filtering, web surfing restriction tools, and customized application filters all extend the capabilities of ISA Server and position it as a solution to a wide variety of security needs within organizations of many sizes.

Outlining the High Cost of Security Breaches

It is rare when a week goes by without a high-profile security breach, denial of service (DoS) attack, exploit, virus, or worm appearing in the news. The risks inherent in modern computing have been increasing exponentially, and effective countermeasures are required in any organization that expects to do business across the Internet.

It has become impossible to turn a blind eye toward these security threats. On the contrary, even organizations that would normally not be obvious candidates for attack from the Internet must secure their services as the vast majority of modern attacks do not focus on any one particular target, but sweep the Internet for any destination host, looking for vulnerabilities to exploit. Infection or exploitation of critical business infrastructure can be extremely costly for an organization. Many of the productivity gains in business recently have been attributed to advances in information technology (IT) functionality, including Exchange Server-related gains, and the loss of this functionality can severely impact the bottom line.

In addition to productivity losses, the legal environment for businesses has changed significantly in recent years. Regulations such as Sarbanes Oxley (SOX), HIPAA, and Gramm-Leach-Bliley have changed the playing field by requiring a certain level of security and validation of private customer data. Organizations can now be sued or fined for substantial sums if proper security precautions are not taken to protect client data. The atmosphere surrounding these concerns provides the backdrop for the evolution and acceptance of the ISA Server 2006 product.

Outlining the Critical Role of Firewall Technology in a Modern Connected Infrastructure

It is widely understood today that valuable corporate assets such as Exchange OWA cannot be exposed to direct access to the world’s users on the Internet. In the beginning, however, the Internet was built on the concept that all connected networks could be trusted. It was not originally designed to provide robust security between networks, so security concepts needed to be developed to secure access between entities on the Internet. Special devices known as firewalls were created to block access to internal network resources for specific companies.

Originally, many organizations were not directly connected to the Internet. Often, even when a connection was created, there was no type of firewall put into place as the perception was that only government or high-security organizations required protection.

With the explosion of viruses, hacking attempts, and worms that began to proliferate, organizations soon began to understand that some type of firewall solution was required to block access to specific, dangerous Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) ports that were used by the Internet’s TCP/IP protocol. This type of firewall technology would inspect each arriving packet and accept or reject it based on the TCP or UDP port specified in the packet of information received.

Some of these firewalls were ASIC-based firewalls, which employed the use of solid-state microchips, with built-in packet-filtering technology. These firewalls, many of which are still used and deployed today, provided organizations with a quick-and-dirty way to filter Internet traffic, but did not allow for a high degree of customization because of their static nature.

The development of software-based firewalls coincided with the need for simpler management interfaces and the ability to make software changes to firewalls quickly and easily. The most popular firewall in organizations today, CheckPoint, falls into this category, as do other popular firewalls such as SonicWall and Cisco PIX. ISA Server 2006 was built and developed as a software-based firewall, and provides the same degree of packet-filtering technology that has become a virtual necessity on the Internet today.

More recently, holes in the capabilities of simple packet-based filtering technology has made a more sophisticated approach to filtering traffic for malicious or spurious content a necessity. ISA Server 2006 responds to these needs with the capabilities to perform application-layer filtering on Internet traffic.

Understanding the Growing Need for Application-Layer Filtering

Nearly all organizations with a presence on the Internet have put some type of packet-filtering firewall technology into place to protect the internal network resources from attack. These types of packet-filtering firewall technologies were useful in blocking specific types of network traffic, such as vulnerabilities that utilize the remote procedure calls (RPC) protocol, by simply blocking TCP and UDP ports that the RPC protocol would use. Other ports, on the other hand, were often left wide open to support certain functionality, such as the TCP 80 port, utilized for HTTP web browsing and for access to OWA/ActiveSync. As previously mentioned, a packet-filtering firewall is only able to inspect the header of a packet, simply understanding which port the data is meant to utilize, but is unable to actually read the content. A good analogy to this is if a border guard was instructed to only allow citizens with specific passports to enter the country, but had no way to inspect their luggage for contraband or illegal substances.

The problem that is becoming more evident, however, is that the viruses, exploits, and attacks have adjusted to conform to this new landscape, and have started to realize that they can conceal the true malicious nature of their payload within the identity of an allowed port. For example, they can “piggyback” their destructive payload over a known “good” port that is open on a packet-filtering firewall. Many modern exploits, viruses, and “scumware,” such as illegal file-sharing applications, piggyback off the TCP 80 HTTP port, for example. Using the border guard analogy to illustrate, the smugglers realized that if they put their contraband in the luggage of a citizen from a country on the border guards’ allowed list, they could smuggle it into the country without worrying that the guard would inspect the package. These types of exploits and attacks are not uncommon, and the list of known application-layer attacks continues to grow.

In the past, when an organization realized that they had been compromised through their traditional packet-filtering firewall, the knee-jerk reaction was to lock down access from the Internet in response to threats. For example, an exploit that arrives over HTTP port 80 might prompt an organization to completely close access to that port on a temporary or semipermanent basis. This approach can greatly impact productivity because OWA access can be affected. This is especially true in a modern connected infrastructure that relies heavily on communications and collaboration with outside vendors and customers. Traditional security techniques involve a trade-off between security and productivity. The tighter a firewall is locked down, for example, the less functional and productive an end user can be.

In direct response to the need to maintain and increase levels of productivity without compromising security, application-layer stateful inspection capabilities were built into ISA Server that can intelligently determine if particular web traffic is legitimate. To illustrate, ISA Server inspects a packet using TCP port 80 to determine if it is a properly formatted HTTP request. Looking back to the border guard analogy, ISA Server is like a border guard who not only checks the passports, but is also given an X-ray machine to check the luggage of each person crossing the border.

The more sophisticated application-layer attacks become, the greater the need becomes for a security solution that can allow for a greater degree of productivity while reducing the type of risks that can exist in an environment that relies on simple packet-based filtering techniques.

Other -----------------
- Governing the SharePoint 2010 Ecosystem : Governing Site Collections and Sites
- Governing the SharePoint 2010 Ecosystem : Governing the Farm
- Windows Server 2008 R2 : Installation of the Microsoft Hyper-V Role
- Windows Server 2008 R2 : Planning Your Implementation of Hyper-V
- Integration of Hypervisor Technology in Windows Server 2008
- Windows Server 2008 R2 : Understanding Microsoft’s Virtualization Strategy
- SharePoint 2010 PerformancePoint Services : Understanding and Working with KPIs (part 3) - Examining Data Mapping
- SharePoint 2010 PerformancePoint Services : Understanding and Working with KPIs (part 2) - Understanding Multiple Targets and Actuals
- SharePoint 2010 PerformancePoint Services : Understanding and Working with KPIs (part 1) - Creating an Analysis Services KPI
- SharePoint 2010 PerformancePoint Services : Understanding and Working with Indicators
 
 
Top 10
- Microsoft Visio 2013 : Adding Structure to Your Diagrams - Finding containers and lists in Visio (part 2) - Wireframes,Legends
- Microsoft Visio 2013 : Adding Structure to Your Diagrams - Finding containers and lists in Visio (part 1) - Swimlanes
- Microsoft Visio 2013 : Adding Structure to Your Diagrams - Formatting and sizing lists
- Microsoft Visio 2013 : Adding Structure to Your Diagrams - Adding shapes to lists
- Microsoft Visio 2013 : Adding Structure to Your Diagrams - Sizing containers
- Microsoft Access 2010 : Control Properties and Why to Use Them (part 3) - The Other Properties of a Control
- Microsoft Access 2010 : Control Properties and Why to Use Them (part 2) - The Data Properties of a Control
- Microsoft Access 2010 : Control Properties and Why to Use Them (part 1) - The Format Properties of a Control
- Microsoft Access 2010 : Form Properties and Why Should You Use Them - Working with the Properties Window
- Microsoft Visio 2013 : Using the Organization Chart Wizard with new data
 
programming4us
Windows Vista
programming4us
Windows 7
programming4us
Windows Azure
programming4us
Windows Server